Classification of Large microarray Datasets Using Fast Random Forest Construction

نویسندگان

  • Elena A. Manilich
  • Z. Meral Özsoyoglu
  • Valeriy Trubachev
  • Tomas Radivoyevitch
چکیده

Random forest is an ensemble classification algorithm. It performs well when most predictive variables are noisy and can be used when the number of variables is much larger than the number of observations. The use of bootstrap samples and restricted subsets of attributes makes it more powerful than simple ensembles of trees. The main advantage of a random forest classifier is its explanatory power: it measures variable importance or impact of each factor on a predicted class label. These characteristics make the algorithm ideal for microarray data. It was shown to build models with high accuracy when tested on high-dimensional microarray datasets. Current implementations of random forest in the machine learning and statistics community, however, limit its usability for mining over large datasets, as they require that the entire dataset remains permanently in memory. We propose a new framework, an optimized implementation of a random forest classifier, which addresses specific properties of microarray data, takes computational complexity of a decision tree algorithm into consideration, and shows excellent computing performance while preserving predictive accuracy. The implementation is based on reducing overlapping computations and eliminating dependency on the size of main memory. The implementation's excellent computational performance makes the algorithm useful for interactive data analyses and data mining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification and Biomarker Genes Selection for Cancer Gene Expression Data Using Random Forest

Background & objective: Microarray and next generation sequencing (NGS) data are the important sources to find helpful molecular patterns. Also, the great number of gene expression data increases the challenge of how to identify the biomarkers associated with cancer. The random forest (RF) is used to effectively analyze the problems of large-p and smal...

متن کامل

Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis

Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...

متن کامل

A Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)

Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...

متن کامل

SFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy

 In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....

متن کامل

Propensity based classification: Dehalogenase and non-dehalogenase enzymes

The present work was designed to classify and differentiate between the dehalogenase enzyme to non–dehalogenases (other hydrolases) by taking the amino acid propensity at the core, surface and both the parts. The data sets were made on an individual basis by selecting the 3D structures of protein available in the PDB (Protein Data Bank). The prediction of the core amino acid were predicted by I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bioinformatics and computational biology

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 2011